Arrow's Impossibility Theorem

Lecture 11 Section 1.6

Robb T. Koether

Hampden-Sydney College

Wed, Sep 13, 2017

- The Majority Criterion
- The Condorcet Criterion
- The Monotonicity Criterion
- The Independence-of-Irrelevant-Alternatives Criterion
- Arrow's Impossibility Theorem
- 6 Assignment

- The Majority Criterion
- 2 The Condorcet Criterion
- The Monotonicity Criterion
- 4 The Independence-of-Irrelevant-Alternatives Criterion
- 5 Arrow's Impossibility Theorem
- 6 Assignment

Definition (Majority Criterion)

The Majority Criterion says that if a candidate has a majority of first-place votes, then that candidate should be the winner. (There may or may not be a majority candidate.)

 The Borda count method and Coombs' method may violate the Majority Criterion.

Example (The Majority Criterion – Borda Count Method)

No. of Votes	8	6	5	3
1st	Α	Α	В	В
2nd	В	В	С	С
3rd	С	D	D	Α
4th	D	С	Α	D

- Does any candidate have a majority?
- Who wins by the Borda Count Method?

Example (The Majority Criterion - Coomb's Method)

No. of Votes	8	6	5	2
1st	D	Α	Α	В
2nd	В	В	С	С
3rd	С	D	D	Α
4th	Α	С	В	D

- Does any candidate have a majority?
- Who wins by Coomb's Method?

- The Borda count method and Coombs' method may violate the Majority Criterion.
- The other methods (I'm pretty sure) do not violate it.

- The Majority Criterion
- 2 The Condorcet Criterion
- The Monotonicity Criterion
- 4 The Independence-of-Irrelevant-Alternatives Criterion
- 5 Arrow's Impossibility Theorem
- 6 Assignment

The Condorcet Criterion

Definition (Condorcet Winner)

The Condorcet winner is a candidate who beat every other candidate in pairwise comparisons. (There may or may not be a Condorcet winner.)

Definition (Condorcet Criterion)

The Condorcet Criterion says that **if** there is a Condorcet winner, then that candidate should be the winner (by whatever method used).

The Condorcet Criterion

Example (The Condorcet Criterion – Borda Count Method)

No. of Votes	8	6	5	3
1st	Α	Α	В	В
2nd	В	В	С	С
3rd	С	D	D	Α
3rd	D	С	Α	D

- Is there a Condorcet winner?
- Who wins by the Borda Count Method?

The Condorcet Criterion

- The plurality method, Borda count method, plurality-with-elimination method, and Coombs' method may violate the Condorcet Criterion.
- The other method (I'm pretty sure) does not violate it.

- The Majority Criterion
- 2 The Condorcet Criterion
- The Monotonicity Criterion
- 4 The Independence-of-Irrelevant-Alternatives Criterior
- 5 Arrow's Impossibility Theorem
- 6 Assignment

The Monotonicity Criterion

Definition (Monotonicity Criterion)

The Monotonicity Criterion says that if candidate X is the winner, then X would still be the winner if a voter had placed X higher in his ranking.

The Monotonicity Criterion

Example (The Monotonicity Criterion – Plurality-with-Elimination Method)

	10	8	7	4
1st	В	Α	С	С
2nd	С	В	Α	В
3rd	Α	С	В	Α

- Who is the winner by the Plurality-with-Elimination Method?
- Suppose that the last four voters decided to rank B over C. Now who is the winner?

The Monotonicity Criterion

- The plurality-with-elimination Method may violate the Monotonicity Criterion.
- The other methods (I'm pretty sure) do not violate it.

- The Majority Criterion
- 2 The Condorcet Criterion
- The Monotonicity Criterion
- 4 The Independence-of-Irrelevant-Alternatives Criterion
- 5 Arrow's Impossibility Theorem
- 6 Assignment

The Independence-of-Irrelevant-Alternatives Criterion

Definition (Independence-of-Irrelevant-Alternatives Criterion)

The independence-of-irrelevant-alternatives criterion (IIA) says that **if** candidate *X* is the winner, then *X* would still be the winner if one or more of the losing candidates had not been in the race.

The Independence-of-Irrelevant-Alternatives Criterion

Example (The Independence-of-Irrelevant-Alternatives Criterion – Plurality-with-Elimination Method)

	10	8	7	4
1st	В	Α	С	С
2nd	С	В	Α	В
3rd	Α	С	В	Α

- Who is the winner by the Plurality-with-Elimination Method?
- Suppose that candidate C drops out. Now who is the winner?

The Independence-of-Irrelevant-Alternatives Criterion

- The plurality method and the plurality-with-elimination method may violate the IIA Criterion.
- The other methods (I'm pretty sure) do not violate it.

- The Majority Criterion
- 2 The Condorcet Criterion
- The Monotonicity Criterion
- 4 The Independence-of-Irrelevant-Alternatives Criterion
- 6 Arrow's Impossibility Theorem
- 6 Assignment

Arrow's Impossibility Theorem

Theorem (Arrow's Impossibility Theorem)

If there are at least 3 candidates, then there is no voting method that cannot violate any of the four desired properties (Majority, Condorcet, Monotonicity, Independence of Irrelevant Alternatives).

- The Majority Criterion
- 2 The Condorcet Criterion
- 3 The Monotonicity Criterion
- 4 The Independence-of-Irrelevant-Alternatives Criterion
- 5 Arrow's Impossibility Theorem
- 6 Assignment

Assignment

Assignment

• Chapter 1 Exercises 51, 52, 53, 54, 55, 56.